get.boundaries.design.Rd
Get Pocock or OBF-style boundaries at the design stage
get.boundaries.design(
rates,
obf,
unequal_type = FALSE,
rho = 1,
change = 0,
algorithm = Miwa(steps = 1000)
)
A vector of information rates (between 0 and 1)
Whether to use OBF (TRUE) or Pocock (FALSE)
Correction for unequal sample sizes across stage
Fraction of variance explained by fitting ANCOVA.
A vector indicating which stages use ANOVA v. ANCOVA.
# Information fractions
t <- 1:3/3
# OBF-type boundaries
get.boundaries.design(rates=t, obf=TRUE)
#> [1] 3.471090 2.454432 2.004035
get.boundaries.design(rates=c(0.3, 0.9, 1.0), obf=TRUE)
#> [1] 3.412065 2.412694 1.969957
get.boundaries.design(rates=c(0.3, 0.9, 1.0), obf=TRUE, unequal_type=TRUE)
#> [1] 3.699929 2.136155 2.026535
# ANCOVA at last stage, R^2 = 0.5
get.boundaries.design(rates=c(0.3, 0.9, 1.0), obf=TRUE, unequal_type=TRUE, rho=sqrt(0.5), change=c(0, 0, 1))
#> [1] 3.895111 2.248843 2.133440
# ANCOVA at last two stages, R^2 = 0.5
get.boundaries.design(rates=t, obf=TRUE, rho=sqrt(0.5), change=c(1, 0, 0))
#> [1] 3.473523 2.456152 2.005440