robincar_mh.Rd
This function estimates Mantel-Haenszel risk difference and average treatment effect.
robincar_mh(
df,
treat_col,
response_col,
strata_cols,
estimand = "ATE",
ci_type = "mGR"
)
A data.frame with the required columns
Name of column in df with treatment variable. Must be binary
Name of the column in df with response variable
Names of columns in df with strata variables
A character string specifying the estimand. One of "MH" or "ATE" (default). See Details
A character string specifying the type of confidence interval. One of "GR", "mGR" (default), "Sato"
The estimand of interest can be either Mantel-Haenszel risk difference or Average Treatment Effect (ATE). The latter is the default option of `estimand`. When `estimand="ATE"`, `ci_type` is limited to the modified Greenland variance estimator (mGR). Otherwise, Greenland's variance estimator (GR) and Sato's variance estimator are optional.
df <- RobinCar:::data_sim
df$y_bin = ifelse(df$y>2.5, 1, 0)
robincar_mh(df = df[df$A!=2,],
treat_col = "A",
response_col = "y_bin",
strata_cols = c("z1", "z2"),
estimand = "MH",
ci_type = "mGR")
#> Treatment group contrasts based on Mantel-Haenszel risk difference
#> Estimand: Mantel-Haenszel risk difference
#> Stratified by z1, z2
#> SE calculated via modified Greenland's estimator
#>
#> Contrasts:
#> # A tibble: 1 × 4
#> contrast estimate se `pval (2-sided)`
#> <chr[1d]> <dbl> <dbl> <dbl>
#> 1 treat 1 - 0 0.144 0.0369 0.0000936